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We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repul-
sion near a Feshbach resonance constitutes a peculiar system where the atomic component is almost nonde-
generate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for
studying this mixture, explain experimental observations, and predict optimal conditions for achieving molecu-
lar Bose-Einstein condensation.
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Interactions between particles play a crucial role in the
behavior of degenerate quantum gases. For instance, the sign
of the effective mean-field interaction determines the stabil-
ity of a large Bose-Einstein condensate(BEC), and the shape
of such a condensate in a trap can be significantly altered
from its ideal-gas form[1]. In degenerate Fermi gases the
effects of mean-field interactions are usually less pronounced
in the size and shape of the trapped cloud, and these quanti-
ties are mostly determined by Fermi statistics. The strength
of the interactions, however, can be strongly increased by
making use of a Feshbach resonance[2,3], and then the situ-
ation changes.

Recent experiments present two types of measurement of
the interaction energy in a degenerate two-component Fermi
gas near a Feshbach resonance[4–7]. At JILA [5] and at
MIT [7] the mean-field energy was found from the frequency
shift of a rf transition for one of the atomic states. The results
are consistent with the magnetic-field dependence of the
scattering lengtha, the energy being positive fora.0 and
negative fora,0. In the Duke[4] and ENS[6] experiments
with 6Li, the results are quite different. The interaction en-
ergy was obtained from the measurement of the size of an
expanding cloud released from the trap. A constant ratio of
the interaction to Fermi energy,Eint /EF<−0.3, was found
around resonance, irrespective of the sign ofa [4,6]. It was
explained in Ref.[4] by claiming a universal behavior in this
strongly interacting regime[8]. The ENS studies in a wide
range of magnetic fields[6] found thatEint changes to a large
positive value whena is tuned positive, but only at a field
strongly shifted from resonance.

In contrast to the JILA[5] and MIT [7] studies providing
a direct measurement of the mean-field interaction energy,
the Duke[4] and ENS[6] experiments measure the influence
of the interactions on the gas pressure. An interpretation of
the ENS experiment involves the creation of weakly bound
molecules via three-body recombination at a positivea [6].

Far from resonance, the binding energy of the produced mol-
ecules and, hence, their kinetic energy are larger than the trap
depth and the molecules escape from the trap. The interac-
tion energy is then determined by the repulsive interaction
between atoms and is positive[6]. Close to resonance, the
three-body recombination is efficient[9] and the molecules
remain trapped as their binding energyeB is smaller than the
trap depth[6,9]. They come to equilibrium with the atoms,
reducing the pressure in the system.

Away from resonances, the interaction strength is propor-
tional to a, and is given byg=4p"2a/M, with M the atom
mass. Close to resonance this relation is not valid, as the
value of uau diverges to infinity and the scattering process
strongly depends on the collision energy. For Boltzmann
gases, already in the 1930s, Beth and Uhlenbeck[10] calcu-
lated the second virial coefficient by including both the scat-
tering and bound states for the relative motion of pairs of
atoms[11]. A small interaction-induced change of the pres-
sure in this approach is negative on both sides of the reso-
nance[12,13].

However, current experiments are not in the Boltzmann
regime. In this paper we show that the atom-molecule mix-
ture formed in a cold atomic Fermi gas constitutes a peculiar
system in which the atomic component is almost nondegen-
erate, whereas quantum degeneracy of the molecules can be
very important. This behavior originates from a decrease of
the atomic fraction with temperature. It is present even if the
initial Fermi gas is strongly degenerate in which case almost
all atoms are converted into molecules. We develop a ther-
modynamic approach for studying this mixture, predict opti-
mal conditions for achieving molecular BEC, and properly
describe the interaction effects as observed at ENS[6].

We assume that fermionic atoms are in equilibrium with
weakly bound(bosonic) molecules formed in the recombina-
tion process. The molecules are treated as point bosons.
Atom-molecule and molecule-molecule interactions are
omitted at first, and will be discussed in a later stage. For a
large scattering lengtha.0, the binding energy of the
weakly bound molecules iseB="2/ sMa2d, and their size is
roughly given bya/2. For treating them as point bosons, this
size should be smaller than the mean interparticle separation.
This requires the inequalitynsa/2d3,1, which at densities
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n<1013 cm−3 is satisfied fora,18 000a0, and excludes a
narrow vicinity of the Feshbach resonance.

The presence of molecules reduces the number of par-
ticles in the atomic component and to an essential extent lifts
its quantum degeneracy. The molecular chemical potential is
negative in the absence of atom-molecule and molecule-
molecule mean field, and thermal equilibrium between atoms
and molecules requires a negative chemical potential for the
atoms. We thus assumea priori that the occupation numbers
of the states of atoms are small. This proves to be the case at
any temperature, except for very lowT where the atomic
fraction is negligible. Under these conditions we omit pairing
correlations between the atoms, which are important for de-
scribing a crossover from the BCS to BEC regime[14–17]
and can be expected even in the nonsuperfluid state.

Assuming equal densities of the atomic components, la-
beled as↑ and ↓, their chemical potentials arem↑=m↓=m,
wherem is the chemical potential of the system as a whole.
The molecular chemical potential ismm=−eB+m̃m, with m̃m
ø0 being the chemical potential of an ideal gas of bosons
with the mass 2M. The condition of thermal equilibrium
m↑+m↓=mm then reads

2m = − eB + m̃m. s1d

From Eq.s1d we will obtain the number of moleculesNm and
the number of atomsNa for given temperatureT and total
number of atomic particlesN=Na+2Nm. This requires us to
obtain the expression for the occupation numbers of the at-
oms and the dependence ofm on Na.

The main difficulty with constructing a thermodynamic
approach for the degenerate molecule-atom mixture is re-
lated to the resonance momentum-dependent character of the
atom-atom interactions. This difficulty is circumvented for
small occupation numbers of the atoms. Then, even at reso-
nance, the interaction energy is equal to the mean value of
the interaction potential for a given relative momentum of a
colliding pair, averaged over the momentum distribution. In
this respect, the interaction problem becomes similar to the
calculation of the total energy of a heavy impurity as caused
by its interactions with the surrounding electrons in a metal
[19]. This approach leads to a relation between the collision-
induced shift of the energy levels of particles in a large
spherical box, and the scattering phase shift. Adding the in-
tegration over the states of the center-of-mass motion for
pairs of atoms, we find that the total energy of interatomic
interaction is equal tookk8 gkk8n↑sk,m ,Tdn↓sk8 ,m ,Td /V,
where n↑ and n↓ are occupation numbers of single-particle
momentum states, andV is the volume(cf. Ref. [19]). The
momentum-dependent coupling constant is given by

gkk8 = −
4p"2

M

dsuk − k8u/2d
uk − k8u/2

. s2d

The phase shiftd is expressed through the relative momen-
tum q= uk −k8u /2 and the scattering lengtha as d
=−arctansqad. In the limit of quau!1, Eq. s2d transforms
into the ordinary coupling constantg=4p"2a/M.

As we haven↑sk,m ,Td=n↓sk,m ,Td;nk, the total energy
of the atomic component and the number of particles in this
component can be written in the form

Ea = o
k

"2k2

M
nk + o

kk8

gkk8

V
nknk8, Na = 2o

k
nk. s3d

In our mean-field approach, the entropy of the atoms is given
by the usual combinatorial expressionf18g

Sa = − 2o
k

fnk ln nk + s1 − nkdlns1 − nkdg. s4d

Equationss3d and s4d immediately lead to an expression for
the atomic grand potentialVa=Ea−TSa−mNa. Then, using
the relationNa=−s]Va/]mdT,V, we obtain for the occupation
numbers of atoms

nk = fexphsek − md/Tj + 1g−1, s5d

whereek="2k2/2M +Uk, andUk=ok8 gkk8nk8 /V is the mean
field acting on the atom with momentumk. Accordingly, the
expression for the grand potential and pressure of the atomic
component reads

Va = − PaV = o
k

f2T lns1 − nkd − Uknkg. s6d

This set of equations is completed by the relation between
the density of bosonic molecules and their chemical poten-
tial. In the absence of molecular BEC we have

nm = sÎ2/LTd3/2g3/2fexp sm̃m/Tdg, s7d

wheregasxd=o j=1
` xj / ja, andLT=s2p"2/MTd1/2 is the ther-

mal de Broglie wavelength for the atoms. FornmLT
3.7.38

the molecular fraction becomes Bose condensed, and we
have m̃=0 and m=−eB/2. Similarly, the energy, entropy,
and grand potential of the molecules are given by usual
equations for an ideal Bose gasf11g.

From Eqs.(1)–(7) we obtain the fraction of unbound at-
oms na/n and the fraction of atoms bound into molecules,
2nm/n, as universal functions of two parameters:T/eB and
nLT

3, wheren is the total density of atomic particles. The
dependence of atomic and molecular fractions onT/eB for
two values ofnLT

3 is shown in Fig. 1. The molecular fraction
increases and the atomic fraction decreases with decreasing
T/eB. Occupation numbers of the atoms are always small,
whereas quantum degeneracy of molecules is important. The
dotted line in Fig. 1(b) indicates the onset of molecular BEC.

This mixture was realized in the ENS experiment[6],
where the occupation numbers for the molecules were up to
0.3 and the molecular fraction was exceeding the atomic one.
In the recent studies[20–23] almost all atoms were con-
verted into molecules by sweeping the magnetic field across
the resonance, and at ENS[20] the temperature was within a
factor of 2 from molecular BEC. Remarkably, one can
modify the molecular fraction and degeneracy parameter
nmLT

3 by adiabatically tuning the atom-atom scattering
length, as shown in Fig. 2. The decrease ofa increases the
binding energyeB and the molecular fraction, and thus

KOKKELMANS, SHLYAPNIKOV, AND SALOMON PHYSICAL REVIEW A 69, 031602(R) (2004)

RAPID COMMUNICATIONS

031602-2



causes heating[20]. Close to resonance,nmLT
3 remains al-

most constant and then decreases due to heating.
The atom-molecule and molecule-molecule interactions

are readily included in our approach fora!LT, where the
corresponding coupling constants aregam=0.9g and gm
=0.3 g [26]. In this limit the interactions provide an equal
shift of the chemical potential and single-particle energyek.
For the atoms this shift isnag/2+nmgam, where the first term
is the atom-atom contributionUk. For the (noncondensed)
molecules the shift isnagam+2nmgm. The entropy of the mix-
ture is given by the same expressions as in the absence of the
interactions. As seen in Figs. 1 and 2, the atom-molecule and
molecule-molecule interactions do not significantly modify
our results. From Fig. 2 one then concludes that the condi-
tions for achieving molecular BEC are optimal for values of
a as low as possible while still staying at the plateau, as at
largera the interaction between the molecules can reduce the
BEC transition temperature[1].

We now analyze the interaction effect observed at ENS
for trapped clouds in the hydrodynamic regime[6]. The ex-
periment was done near the Feshbach resonance located at

the magnetic fieldB0=810 G, and the data results from two
types of measurements of the size of the cloud released from
the optical trap. In the first one, the magnetic field and,
hence, the scattering length are kept the same as in the trap.
Therefore, the cloud expands with the speed of soundcs

=Îs]P/]rdS, wherer=mn is the mass density. The speedcs

and, hence, the size of the expanding cloud are influenced by
the presence of molecules and by the interparticle interac-
tions.

In the second type of measurement, the magnetic field is
first rapidly ramped down and the scattering length becomes
almost zero on a time scalet,2 ms. This time scale is short
compared to the collisional time. Therefore, the spatial dis-
tribution of the atoms remains the same as in the initial
cloud, although the mean field is no longer present. At the
same time, a rapid decrease ofa increases the binding energy
of moleculeseB. However, as the timet&" /eB, they cannot
adiabatically follow to a deeper bound state and dissociate
into atoms which acquire kinetic energy. Thus the system
expands symmetrically as an ideal gas ofN atoms, with the
initial density profile. The momentum distributionfk will be
a sum of the initial atomic momentum distribution and one
that arises from the dissociated molecules. The latter is found
assuming an abrupt change ofa and, hence, projecting the
molecular wave function on a complete set of plane waves.
This gives rise to a distributioncsqd for the relative momen-
tum q. The single-particle momentum distribution for the
atoms produced out of molecules results then from convolut-
ing csuk −k8u /2d with the molecular distribution function
nmsk +k8d by integrating overk8. One can establish a rela-
tion between the expansion velocityv0 of this nonequilib-
rium system and the expansion velocityc0 of an ideal equi-
librium two-component atomic Fermi gas which has the
same density and temperature: 4p3ne0

Mv0/" dk k2fk

FIG. 3. Calculated(solid line) and measured[6] (squares and
crosses) ratio b of the interaction to kinetic energy(see text). The
calculated line forB.790 G is for experimental conditionsT
=0.9 EF=3.4 mK andn=331013 cm−3. For B,700 G we take the
averaged experimental conditionsT=1.1 EF=2.4 mK and n
=1.331013 cm−3. For 700,B,800 G, we use the local conditions
(see Ref.[6]). Inset: Scattering length as a function of magnetic
field.

FIG. 1. Fraction of unbound atomsna/n (lower curves, bold)
and fraction of atoms bound into molecules, 2nm/n (upper curves)
vs T/eB: (a) nLT

3=2.5, squares and circles show the ENS data[20];
(b) nLT

3=14.8, and the vertical lines indicate the onset of molecular
BEC. Dashed curves are obtained including atom-molecule and
molecule-molecule interactions.

FIG. 2. Molecular degeneracy parameternmLT
3 under adiabatic

variation of a for 6Li, assumingnLT
3=15 close to resonance. The

dashed curve is obtained including atom-molecule and molecule-
molecule interactions. The horizontal dashed line shows the critical
value for molecular BEC.
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=e0
Mc0/" dk k2ñk, with ñk being the ideal-gas momentum dis-

tribution. Using the scaling approach[24,25], one can find
that in the spherical case the velocityc0 coincides with the
expansion velocity of the hydrodynamic Fermi gas in the
absence of mean-field interactions and, accordingly, is given
by c0

2=5P0/3r, whereP0=2E0/3V is the pressure.
The relative difference between the squared size of the

expanding cloud in the two described cases can be treated as
the ratio of the interaction to kinetic energy and called the
interaction shift. This interaction shift is then given by the
relative difference between the two squared velocities:b
=fcs

2−v0
2g /v0

2. Our results for this quantity are calculated for
experimental conditions and are presented in Fig. 3. The
sound velocitycs was obtained using the above developed
approach including only atom-atom interactions. The field
region wherensa/2d3.1 is beyond the validity of this ap-
proach and is shown by the dashed curve. In Fig. 3 we also
show our previous results for fieldsB.810 G sa,0d and
B,700 G s0,a,2000a0d, where molecules are absent[6].

Our quantum-statistical approach gives a negative interac-
tion shift on both sides of the Feshbach resonance, in good
quantitative agreement with the experiment. Without mol-
ecules present, the interaction energy would jump to positive
values left from resonance, as can be seen from our calcula-
tion in Ref. [6]. This demonstrates that the apparent field
shift from resonance, where a sign change in the interaction
energy is observed, is an indirect signature of the presence of
molecules in the trap.

For high temperaturesT@EF and small binding energy

eB!T, we find thatb has a universal behavior and is pro-
portional to the second virial coefficient. However, this only
holds at high temperatures(cf. Ref. [13]), and at lowT the
molecule-molecule interaction can strongly influence the re-
sult. ForT approaching the temperature of molecular BEC,
which is Tc<"2n2/3/M <0.2 EF, the atomic fraction is al-
ready small and the sound velocitycs is determined by the
molecular cloud. For a!LT we find cs

2=0.4 Tc/M
+ngm/2M, where the second term is provided by the
molecule-molecule interaction and is omitted in the high-T
approach. The ratio of this term to the first one is,5sna3d1/3.
For B=700 G at densities of Ref.[6], it is equal to 1 and is
expected to grow when approaching the resonance.

Thus, except for a narrow region wherenuau3@1, one
cannot speak of a universal behavior of the shiftb on both
sides of the resonance. The situation depends on possibilities
of creating an equilibrium atom-molecule mixture. More-
over, at low temperatures the universality can be broken by
the molecule-molecule interactions.
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